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Abstract
We study the localized magnetic states of an impurity in biased bilayer and trilayer graphene. It
is found that the magnetic boundary for bilayer and trilayer graphene shows mixed features of
Dirac and conventional fermions. For zero gate bias, as the impurity energy approaches the
Dirac point, the impurity magnetization region diminishes for bilayer and trilayer graphene.
When a gate bias is applied, the dependence of impurity magnetic states on the impurity energy
exhibits a different behavior for bilayer and trilayer graphene due to the opening of a gap
between the valence and the conduction band in the bilayer graphene with an applied gate bias.
The magnetic moment and the corresponding magnetic transition of the impurity in bilayer
graphene are also investigated.

1. Introduction

The intense research currently devoted to graphene, a two-
dimensional carbon honeycomb lattice, has uncovered a wealth
of fascinating properties such as the anomalous quantized Hall
effect, the absence of weak localization and the existence of
minimal conductivity [1–5]. Graphene has a high mobility and
its carrier density is controllable by an applied gate voltage [2]
and a spin–orbit interaction [6–10].

Graphene structures have been the focus of much
interest [12–20, 26]. In particular, adatoms may be positioned
on graphene by current nanotechnology [21], rendering the
study and manipulation of local electronic properties. Ab
initio calculations for transition metal adatoms [22] show
a tendency to the formation of local magnetic moments.
Recently Uchoa et al [23] examined the condition for the
emergence of localized magnetic moments on adatoms with
inner shell electrons on a single-layer graphene. It is
found that the impurity magnetization boundary exhibits
anomalous characteristics. In contrast to the case of an
impurity in an ordinary metal, the impurity can magnetize
for any small charging energy due to the low density of
state (DOS) at the Dirac point. On the other hand, detailed
experimental studies [26] on multi-layer graphene showed

a marked modification of the electronic structure with the
number of layers. Hence, we expect [11] a qualitative
difference in the magnetic properties of the adatoms on multi-
layer graphene; an issue which we address here by inspecting
the localized magnetic state of an impurity in a biased bilayer
and trilayer graphene. We find that the size of the magnetic
region decreases rapidly compared with that in monolayer
graphene, the impurity can magnetize even when the energy
of the doubly occupied state is below the Fermi level. The
impurity magnetization region is asymmetric due to the special
nature of the quasiparticles having mixed features of Dirac
and conventional fermions. When a gate bias is applied, the
dependence of the impurity magnetic states on the impurity
energy for a bilayer graphene exhibits a different behavior from
that for a trilayer graphene due to the opening of a gate-induced
gap between the valence and the conduction band in the bilayer
graphene. Calculating the occupation of the impurity level
and the susceptibility in the bilayer graphene we show that
the magnetic moment decreases with increasing the inter-layer
coupling.

2. Bilayer graphene

Figure 1 shows the lattice structure of the bilayer graphene
with the adatom. The inter-layer stacking is assumed to be the
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Figure 1. Schematic diagram of the lattice structure of the bilayer
graphene with an impurity atom.

Bernal order where the top layer has its A sublattice atop the
sublattice B of the bottom layer. The bias voltage V is applied
across the layers. The system Hamiltonian

H = HTB + Hi + H f (1)

contains the graphene bilayer term HTB, which in a tight-
binding approximation reads

HTB =
2∑

l=1

Hl + HT + HV , (2)

with

Hl = −t
∑

〈i, j〉σ
[a†

lσ (Ri)blσ (R j ) + b†
lσ (R j)alσ (Ri)], (3)

HT = −tp

∑

i,σ

[a†
1σ (Ri )b2σ (Ri ) + b†

2σ (Ri)a1σ (Ri)], (4)

HV = V

2

∑

iσ

[a†
1σ (Ri)a1σ (Ri ) + b†

1σ (Ri )b1σ (Ri )

− a†
2σ (Ri )a2σ (Ri) − b†

2σ (Ri)b2σ (Ri )]. (5)

The operator alσ (Ri) (blσ (Ri)) annihilates a state with a spin
σ at the position Ri on the sublattice A(B) of the l plane. t is
the nearest neighbour in-plane hopping energy, tp is the inter-
layer hopping energy. For the hybridization with the localized
impurity states we write

Hi = V f

∑

σ

[ f †
σ b1σ (0) + b†

1σ (0) fσ ], (6)

where fσ ( f †
σ ) is the annihilation (creation) operator of a state

with a spin σ at the impurity, and V f is the hybridization
strength. In the momentum space we have

Hl = −t
∑

kσ

[φ(k)a†
lkσ blkσ + φ∗(k)b†

lkσ alkσ ], (7)

HT = tp

∑

k,σ

[a†
1kσ b2kσ + b†

2kσ a1kσ ], (8)

HV = V

2

∑

kσ

[a†
1kσa1kσ + b†

1kσ b1kσ − a†
2kσ a2kσ − b†

2kσ b2kσ ],
(9)

Hi = V f√
N

∑

kσ

( f †
σ b1kσ + b†

1kσ fσ ), (10)

where φ(q) = −t
∑3

i=1 eiq·δi with δ1 = a
2 (1,

√
3, 0), δ2 =

a
2 (1,−√

3, 0), δ3 = a(1, 0, 0) (here a is the lattice spacing),
and N is the number of sites on sublattice B of plane 1.
Diagonalizing HTB we find the spectrum

E±±(k) = ±

√√√√
ε2

k + t2
p

2
+ V 2

4
±

√
t4

p

4
+ (t2

p + V 2)ε2
k , (11)

where εk = ±|φ(k)| is linearizable around the K points of
the Brillouin zone by εk = ±vF|k| where vF = 3ta/2 is the
Fermi velocity. The impurity is described by the Hamiltonian
H f with

H f =
∑

σ

ε0 f †
σ fσ + Un↑n↓, (12)

where nσ = f †
σ fσ is the occupation number operator,

ε0 is the single electron energy at the impurity. The
Coulomb interaction is included as a finite Anderson term
U . For simplicity, we adopt a mean field approximation
to the electronic correlations at the impurity, Un↑n↓ �
U

∑
σ 〈nσ 〉 f †

σ fσ − U〈n↑〉〈n↓〉. The impurity Hamiltonian is
rewritten as H f = ∑

σ εσ f †
σ fσ with εσ = ε0 + U〈nσ 〉.

To investigate the localized magnetic states, we calculate the
occupation number of the electrons of a given spin σ at the
impurity. At low temperatures all the states below the Fermi
level μ are completely occupied and the occupation of the
impurity is determined by

〈nσ 〉 =
∫ μ

−∞
dω ρσ

f (ω), (13)

where ρσ
f (ω) is the DOS at the impurity level. We infer this

from the retarded Green’s function

Gr,σσ ′
f (t − t ′) = −iθ(t − t ′)〈{ fσ (t), f †

σ ′(t ′)}〉. (14)

By the standard equation of motion, we can derive (η → 0+)

Gr,σσ ′
f (ω) = δσσ ′

ω − εσ − �r
f (ω) + iη

, (15)

where

�r
f (ω) = V 2

f

N

∑

k

× −(ω − V
2 )v2

F|k|2 + (ω − V
2 )(ω + V

2 )2 − t2
p(ω + V

2 )

v4
F|k|4 − 2(ω2 + V 2

4 )v2
F|k|2 + (ω2 − V 2

2 )2 − t2
p(ω

2 − V 2

4 )
.

(16)

Introducing a high-energy cutoff D of the graphene bandwidth,

we obtain for ω2 � 1
4

t2
p V 2

t2
p+V 2 ,

�r
f (ω) = V 2

f

D2

{
V ω2 − (V 2/2 + t2

p)ω − V t2
p/2

√
4(V 2 + t2

p)ω
2 − t2

pV 2

× ln

∣∣∣∣
(D2 − x1)x2

(D2 − x2)x1

∣∣∣∣ − ω − V/2

2

× ln

∣∣∣∣
(D2 − x1)(D2 − x2)

x1x2

∣∣∣∣

}

2
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+ i
πV 2

f

D2

{
V ω2 − (V 2/2 + t2

p)ω − V t2
p/2

√
4(V 2 + t2

p)ω
2 − t2

pV 2

×
[

sgn

(
dx1

dω

)
θ(0 < x1 < D2)

− sgn

(
dx2

dω

)
θ(0 < x2 < D2)

]

− ω − V/2

2

[
sgn

(
dx1

dω

)
θ(0 < x1 < D2)

+ sgn

(
dx2

dω

)
θ(0 < x2 < D2)

]}
, (17)

where θ(x) is the step function, and

x1,2 =
(

ω2 + V 2

4

)
± 1

2

√
4(V 2 + t2

p)ω
2 − t2

pV 2. (18)

For ω2 < 1
4

t2
p V 2

t2
p+V 2 ,

�r
f (ω) = V 2

f

D2

[
− ω − V/2

2

× ln

∣∣∣∣
D4−2(ω2+V 2/4)D2 + (ω2−V 2/2)2−t2

p(ω
2−V 2/4)

(ω2−V 2/2)2 − t2
p(ω

2−V 2/4)

∣∣∣∣

+ V ω2 − (V 2/2 + t2
p)ω − V t2

p/2
√

t2
pV 2/4 − (V 2 + t2

p)ω
2

×
(

arctan
D2 − ω2 − V 2/4√

t2
pV 2/4 − (V 2 + t2

p)ω
2

+ arctan
ω2 + V 2/4√

t2
pV 2/4 − (V 2 + t2

p)ω
2

)]
. (19)

The summation over k in equation (16) is accurate for ω � D
by ensuring the conservation of the total number of states
in the Brillouin zone according to the Debye prescription.
Substituting �r

f (ω) into equation (15), the retarded Green’s
function Gr,σσ

f (ω) can be obtained. Note, the determination
of 〈nσ 〉 in equation (13) entails a self-consistent calculation
of DOS at the impurity level via the relation ρσ

f (ω) =
− 1

π
Im Gr,σσ

f (ω). When tp = V = 0, our present results
reduce to those of [23].

3. Trilayer graphene

The Hamiltonian for trilayer graphene contains a coupling of
the B atom of the second layer to the A atom of the third
layer according to the conventional Bernal-type stacking order.
Similar to the bilayer graphene case, we find for the impurity
Green’s function

Gr,σσ ′
f (ω) = δσσ ′

ω − εσ − �r + iη
, (20)

where

�r = − V 2
f

N

∑

k

A1v
4
F|k|4 + B1v

2
F|k|2 + C1

v6
F|k|6 + B2v

4
F|k|4 + C2v

2
F|k|2 + D2

(21)

with A1 = ω − V
2 , B1 = t2

pω − (ω − V
2 )[ω2 + (ω + V

2 )2],
C1 = ω2(ω− V

2 )(ω+ V
2 )2 −2t2

pω
2(ω+ V

2 ), B2 = −3ω2 − V 2

2 ,

C2 = −2t2
pω

2+3ω4+ V 4

16 , D2 = −ω2(ω2− V 2

4 )2+2t2
pω

2(ω2−
V 2

4 ). Performing the summation over k in equation (21) as
equation (16) we find for 
 = (2B3

2 − 9B2C2 + 27D2)
2 +

4(−B2
2 + 3C2)

3 � 0 the result

�r = − V 2
f

D2

{[
A1 + A1(x2 + x3)x1 + B1x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

]

× ln

∣∣∣∣
D2 − x1

x1

∣∣∣∣ + A1(x2 + x3) + B1√
x2x3 − (x2 + x3)2/4

×
(

arctan
D2 − (x2 + x3)/2√
x2x3 − (x2 + x3)2/4

+ arctan
(x2 + x3)/2√

x2x3 − (x2 + x3)2/4

)

+ A1(x2 + x3)x1 + B1x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

×
[−1

2
ln

D2 − (x2 + x3) + x2x3

x2x3

+ (x2 + x3)/2 − x1

2
√

x2x3 − (x2 + x3)2/4

×
(

arctan
D2 − (x2 + x3)/2√
x2x3 − (x2 + x3)2/4

+ arctan
(x2 + x3)/2√

x2x3 − (x2 + x3)2/4

)]}

− i sgn

(
dx1

dω

)
θ(0 < x1 < D2)

πV 2
f

D2

×
[

A1 + A1(x2 + x3)x1 + B1x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

]
, (22)

where

x1 = − B2

3
+ 1

21/3

1

3

{
− 2B3

2 + 9B2C2 − 27D2

+
√

(2B3
2 − 9B2C2 + 27D2)2 + 4(−B2

2 + 3C2)3
} 1

3

+ 1

21/33
{−2B3

2 + 9B2C2 − 27D2

−
√

(2B3
2 − 9B2C2 + 27D2)2 + 4(−B2

2 + 3C2)3} 1
3 , (23)

x2,3 = − B2

3
+ − 1

2 − i
√

3
2

3

1

21/3
{−2B3

2 + 9B2C2 − 27D2

±
√

(2B3
2 − 9B2C2 + 27D2)2 + 4(−B2

2 + 3C2)3} 1
3

+ − 1
2 + i

√
3

2

3

1

21/3
{−2B3

2 + 9B2C2 − 27D2

∓
√

(2B3
2 − 9B2C2 + 27D2)2 + 4(−B2

2 + 3C2)3} 1
3 . (24)

For 
 < 0,

�r = − V 2
f

D2

{[
A1 + [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

]

× ln

∣∣∣∣
D2 − x1

x1

∣∣∣∣ −
[

A1(x2 + x3) + B1

x3 − x2

3
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+ [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x2)

]
ln

∣∣∣∣
D2 − x2

x2

∣∣∣∣

+
[

A1(x2 + x3) + B1

x3 − x2

+ [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x2)

− [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

]

× ln

∣∣∣∣
D2 − x3

x3

∣∣∣∣

}
− i

πV 2
f

D2

{
sgn

(
dx1

dω

)
θ(0 < x1 < D2)

×
[

A1 + [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

]

− sgn

(
dx2

dω

)
θ(0 < x2 < D2)

[
A1(x2 + x3) + B1

x3 − x2

+ [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x2)

]

+ sgn

(
dx3

dω

)
θ(0 < x3 < D2)

[
A1(x2 + x3) + B1

x3 − x2

+ [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x2)

− [A1(x2 + x3) + B1]x1 − A1x2x3 + C1

(x2 − x1)(x3 − x1)

]}
, (25)

where

x1 = − B2

3
+

2
√

B2
2 − 3C2

3
cos

(
arccos T

3

)
,

x2 = − B2

3
+

2
√

B2
2 − 3C2

3
cos

(
2π + arccos T

3

)
,

(26)

x3 = − B2

3
+

2
√

B2
2 − 3C2

3
cos

(
4π + arccos T

3

)
,

T = −2(B2
2 − 3C2)B2 − 3(B2C2 − 9D2)

2(B2
2 − 3C2)

3
2

.

(27)

Substituting equations (22) and (25) in equation (20), we can
derive self-consistently the occupation on the impurity for the
case of a trilayer graphene.

4. Numerical analysis

From the occupation of the two spin channels on the impurity
we conclude that a localized magnetic moment forms whenever
n↑ �= n↓. For a detailed study, conventionally one introduces
the dimensionless parameters

x = D�/U and y = (μ − ε0)/U

with � = πV 2
f /D2. (28)

The transition curves from the magnetic to the non-magnetic
behavior as a function of the parameters x and y for the
different hybridization and inter-layer coupling in the bilayer
graphene are shown in figure 2. For tp = V = 0, our
results reduce to those of [23]. The magnetic boundary exhibits

ε μ

ε μ

ε μ

ε μ

Figure 2. Regions of the magnetic and the non-magnetic phase for
the bilayer graphene. The boundary line gives y as a function of x
(defined in equation (28)) at tp/D = 0 for the different V f /D (a) and
at V f /D = 0.14 for different tp/D (b). The other parameters are
ε0/D = 0.029 and V/D = 0.

an asymmetry around y = 0.5 and can even cross the line
y = 1. The magnetic region shrinks in the x direction
when the hybridization V f is increased; for y close to 1
(cf equation (28)), the boundary line for magnetic transition
shifts away from the y axis due to the increased influence
of graphene on the impurity magnetization with enhanced
hybridization. When the inter-layer coupling tp is taken into
account (see figure 2(b)), the size of the magnetic region
diminishes rapidly, and for a large enough tp, the magnetic
boundary shrinks above the line y = 0. However, the
magnetic boundary does not turn symmetric around y = 0.5
and the above magnetic boundary line crosses the line y =
1. The origin of this phenomena lies in the peculiar nature
of the quasiparticles in the bilayer graphene; they exhibit
features akin both to Dirac and to conventional fermions. The
contribution of conventional fermions originates from the inter-
layer coupling that supports a metallic bilayer graphene and
results in effects as for a conventional metallic host on the
magnetic properties of the impurity. For large inter-layer
coupling we observe, therefore, magnetic boundaries similar
to those for an impurity in an ordinary metal. Figure 3 shows
for a bilayer graphene the boundary between magnetic and
non-magnetic impurity states as a function of the parameters
x and y (equation (28)) for different impurity energy levels
ε0. For V = 0 the size of the magnetic region grows as ε0

approaches the energy of the Dirac point. This behavior is
reminiscent of the single layer of graphene [23], and originates

4
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ε

ε

ε

ε

ε μ

ε μ

ε

ε

ε

ε

ε μ

ε μ

Figure 3. Regions of magnetic and non-magnetic phase for the
bilayer graphene. The boundary line gives y as a function of x for the
different ε0/D at V/D = 0 (a) and at V/D = 0.05 (b), where
V f /D = 0.3 and tp/D = 0.05.

from the suppression of the DOS around the impurity energy
level. In contrast, for a nonzero gate bias, when ε0 is close
to the Dirac point from the positive energy side, the size of
the region first increases to a maximum, then decreases with
decreasing ε0, as shown in figure 3(b). The explanation for
this phenomenon is as follows: the gate bias voltage gives
rise to a finite electronic gap between the conduction and the
valence band, and induces a large local DOS close to the gap
edges [24]. In particular, the DOS may extend into the gap
due to the influence of the impurity [25]. In this situation, the
coupling between the bath and the impurity is enhanced inside
the gap as compared with the zero bias case, leading thus to the
non-monotonic dependence of the size of the region with ε0.

Figure 4 shows the magnetic transition curve as a function
of the parameters x and y (equation (28)) for different ε0 in
the trilayer graphene. For V = 0, phenomena such as the
asymmetry around the line y = 0.5 and the crossing of the
line y = 1 in the magnetic boundary suggest the existence
of Dirac fermions in the trilayer graphene. As ε0 approaches
the energy of the Dirac point, the magnetization region of the
impurity grows due to the two almost-linear touching bands
reminiscent of the bands in monolayer graphene [26]. It is
interesting to note that for nonzero gate bias, the impurity
magnetization region increases monotonously when ε0 is close
to the Dirac point, which is clearly different from that in the
bilayer graphene. This behavior stems from the fact that the
gate bias cannot destroy the particle–hole degeneracy in the
trilayer graphene [26].

To investigate the localized magnetic moment of the
impurity in the magnetic region and the magnetic transition

ε

ε

ε

ε
ε μ

ε μ

ε

ε

ε

ε
ε μ

ε μ

Figure 4. Regions of magnetic and non-magnetic phase for the
trilayer graphene. The boundary line gives y as a function of x for
the different ε0/D at V/D = 0 (a) and at V/D = 0.05 (b), where
V f /D = 0.2 and tp/D = 0.05.

we calculate the magnetic susceptibility. The energy of the
impurity spin states in a magnetic field B is εσ = ε0−σμB B +
Unσ . The magnetic susceptibility of the impurity is derived
from

χ = −μ2
B

∑

σ

d〈nσ 〉
dεσ

1 − U d〈nσ 〉
dεσ

1 − U 2 d〈nσ 〉
dεσ

d〈nσ 〉
dεσ

. (29)

Figure 5 shows the occupation of the impurity spin level and
the magnetic susceptibility as a function of y for the different
inter-layer coupling in a bilayer graphene. The occupation
〈nσ 〉 versus y is a bubble that corresponds to the impurity
magnetization. The corresponding susceptibility exhibits two
peaks at the magnetization edge indicating the strength of the
magnetic transition. For tp = 0, a strong magnetic moment of
∼ 0.7μB forms in almost the whole magnetic region. With
increasing the inter-layer coupling tp, the magnetic bubble
region diminishes, signaling the decrease of the magnetic
moment of the impurity, and the magnetic transition becomes
very sharp. There is no localized magnetic moment in the
case of a sufficiently strong inter-layer coupling. In this case,
the magnetic boundary shrinks below the line x = 6 in the
x direction (see figure 2(b)). Figure 6 shows the occupation
of the impurity level and the magnetic susceptibility as a
function of y for the different impurity energy level ε0 in the
bilayer graphene. The corresponding magnetic boundaries are
defined in figures 3(a) and (b) respectively. For V = 0, the
magnetic bubble shifts towards the 〈nσ 〉 axis, and decreases
with increasing ε0. When ε0 becomes large enough, the bubble

5
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Figure 5. The occupation of the impurity spin level and the magnetic
susceptibility in the bilayer graphene for the different tp/D at x = 6.
The other parameters are those of figure 2(b).

vanishes, meaning that the impurity loses magnetism in this
situation. For large ε0 the magnetic transition becomes very
sharp. Inspecting figures 6(c) and (d), we find that when
the gate bias V is applied the magnetic bubble shows a non-
monotonic dependence on ε0, while the magnetic transition

becomes very sharp with increasing ε0. Since the magnetic
boundary line shrinks on the left-hand side of the line x = 4.2
at ε0/D = 0.082 (see figure 3(b)), the impurity remains non-
magnetic for any y, i.e. n↑ = n↓, as shown in figure 6(c).

5. Conclusions

Summarizing, we studied the localized magnetic states of
an impurity in biased bilayer and trilayer graphene. We
found that the size of the magnetic region decreases rapidly
compared with that of a monolayer graphene. The impurity
can magnetize even when the energy of the doubly occupied
state is below the Fermi level and the impurity magnetization
region has a different shape. We can trace this behavior back
to the special nature of quasiparticles. When a gate bias is
applied, the dependence of the impurity magnetic states on
the impurity energy for the bilayer graphene shows a behavior
different from that for a trilayer graphene due to the opening
of a gap between the valence and the conduction band in the
bilayer graphene. Correspondingly, the magnetic moment of
the impurity versus the impurity energy in the bilayer graphene
is affected strongly by the band gap induced by the gate bias.
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